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Let {Ui};::O be a sequence of continuous functions on [0, 1] such that (uo ,... , Uk)
is a Tchebycheff system on [0, 1] for all k ;> 0 and let C(uo ,... , Uk) denote the
corresponding generalized convexity cone. It is proved that if f belongs to
C(uo ,... , Un-I), then its distance from the linear space spanned by (Uo , , un) is
strictly smaller than its distance from the linear space spanned by (uo , , Un-I)'
Other properties of the best approximants to such functions are also given.

It is shown, by a general category argument, that no direct converse can exit.
It is then established that if strict decrease of distances (or one of a number of
other properties of the best approximants) holds for all subintervals of [0, 1], then
fE C(uo ,... , Un-I) for all of these.

1. DIRECT THEOREMS

Let {Ui}~ be an infinite sequence of continuous functions on [0, 1] such
that for all n, n ;? 1, (uo ,... , Un-I) is a positive Tchebycheff system (T-system),
i.e.,

>0 (Ll)

for all 0 ~ Xl < X2 < ... < X n ~ 1.
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STRICTLY DECREASING BEST APPROXIMATION

DEFINITION 1. A functionJfor which

Uo(xl) UO(Xn+l)

333

(1.2)

for all 0 ~ Xl < X2 < ... < Xn+l ~ 1, is said to be convex with respect to
(Uo ,... , Un-I)' The cone of these functions is denoted by C(uo ,... , Un-I) and
is called a generalized convexity cone.

Properties of such cones have been recently investigated in several papers
[1, 7, 8], and in the monograph [5].

Notation. We denote by A(uo ,... , un-J the n-dimensional linear space
spanned by (uo ,... , Un-I)' When no ambiguity exists, we abbreviate this to

An-I'
We further denote by

the best approximant, in the uniform norm on [a, b], from A n - l to f There
exists a unique best approximant since {Ui}~-l was assumed to be aT-system
(see, e.g., [3]).

Finally, we let

En-l(f) = En-l([a, b];f) = IIJ - Tn-l([a, b];!)!1

be the distance from An - l to J (in the uniform norm, which is the only one
we use).

DEFINITION 2. Let g(x) be a continuous function on [a, b]. A point X

for which Ig(x) I = II g II is called an extremal point for g. An extremal point x
is called a (+) point if g(x) > 0; otherwise it is called a (-) point. A
sequence of extremal points for g which are (+) points and (-) points
alternatingly, is called an "alternance" of g.

In this section we shall establish properties of the best approximants from
A n - l to generalized convex functions. We take as [a, b] the fixed interval
[0, 1].

THEOREM 1. LetJ be a Junction belonging to quo ,..., Un-I) "" An-I' Then

(1.3)

Proof Let P E An be such that

En(f) = II P - JII·
The theorem will follow once we prove that P ¢ An-I'
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We note first that if Ei!) = 0, then (1.3) follows immediately, since, by
assumption,f¢An_l . Hence, we may assume that En(f) > O.

Since (uo ,... , un) is a T-system, the well-known characterization of best
approximants (see, e.g., [3]) provides for the existence of an n + 2-term
"alternance" off - P, i.e., of n + 2 points 0 ~ Xl < X 2 < ... < X n +2 ~ I,
such that

i = I, 2,... , n + 2, (1.4)

where a is I or -1.
We now take one of the sequences {Xi}~+l, {Xi}~+2 for which the value

- En(f) is attained at the last point. Renaming the selected sequence
{Yi}~+l(YI < Y2 ... < Yn+l), we have

j = 0, I, ... , n. (1.5)

Assuming now that P E An-I, we also have f - P E C(uo , ... , Un-I), i.e.,

Un-I(YI)
!(YI) - P(YI)

Un- I(Yn+1)
!(Yn+1) - P(Yn+1)

;:?o O. (1.6)

On the other hand, substituting from (1.5) and expanding by the last row,
we see that the determinant is negative, since the elements of the last row
are nonzero and of alternating signs, and all corresponding minors are
positive by (1.1). This contradiction proves the theorem.

THEOREM 2. Let f belong to C(uo ,... , Un-I) "" An-I' Then the maximal
length ofan "alternance" of f - Tn-l(f) is n + 1.

Proof Assuming that there is an n + 2-term "alternance" {Xi}~+2, we
may repeat the selection process used in the proof of Theorem I and arrive
at a contradiction.

THEOREM 3. Let f be a function belonging to C(uo ,... , Un-I), and let
p = L;~o aiui = Tn(f); then an ;:?o O. Ij, further,j¢ A n- l , then an> O.

Proof If f E An, then clearly f == P, and since, for all

o~ Xl < ... <Xn+1 ~ I,

Un-I(Xn+1)
P(Xn+1)

Un-I(Xn+1) ,
Un(Xn+1)

it follows that an ;:?o O. Furthermore, if f ¢ An-I, then obviously an > O.
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Assuming next thatf¢An , it follows that Ei!) > °and we may proceed
as in the proof of the previous theorem, securing a sequence {Yi}n+1 for
which (1.6) holds. Assuming that an :s;; 0, we have f - P E quo ,... , Un-I)'
Hence a contradiction is reached in the same way as in the proof of Theo
rem 1.

Combining both parts, the theorem follows.
A similar method establishes also

THEOREM 4. If f is an n-times continuously differentiable function of
quo ,... , Un-I), and {Ui}~ is an Extended Complete TchebychefJ system con
structed on {Wi}~ (for the relevant definitions and properties see [8] or [5]),
then

D ... D f(t)a > min n-I 0
n t wn(t) ,

where Dig = d[g(t)jwi(t)]jdt, i = 0, 1,... , n.
In particular if Ui(t) = tiji!, we have

an > minpnl(t).

(1.7)

(1.8)

For generalized absolutely monotone functions (see [6] and [2]) we easily
derive from Theorem 4 the following

THEOREM 5. Let f be a generalized absolutely monotone function on (0, 1)
and let, for k ~ 0,

k

Tk(f) = Pk = L aiUi'
i=O

Then

k = 0,1,....
Dk- I ... Dof(O+) :s::

Wk(O) "" ak,

In particular, iff(t) = L;=o bktkjk!, with bk ~ °for all k, then

(1.9)

k = 0,1,.... (1.10)

For the special case of ordinary convexity of order n we have, further, the
following:

THEOREM 6. Let fE C(1, x, ... , xn- I) '" A(1, x, ... , xn- I) and set

g(t) - f(t) - Tn-I(f)(t).
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Then

(a) Both end points of [0, 1] are extremal points for g; explicitly,

g(1) = (_l)n-l g(O) = II g II = En.

(b) For n ? 2, the only (+) point greater than the last (-) point is
t = 1. Similarly, the only (_l)n-l point smaller than the first (_l)n point is
t = O.

Proof We prove the theorem only for t = 1, the proof for the other end
point being identical.

By the characterization theorem for best approximants, there exists an
n + I-term "alternance". By using an argument similar to that of the proof
of Theorem 1, we conclude that in such a sequence of n + 1 points the last
one must be a (+) point.

Let t* be the last (-) point. Then there exist points t1 < ... tn - 1 < t* < s
which are (-) and (+) points alternatingly. We shall show that s = 1.

Indeed, assume s < 1. Since g E C(1, x,... , x n - 1), we have, for the sequence
t2 < t3 < ... < t* < s, the inequality

t* s
? O.

(t*)n-l sn-l I

-llgll Ilgll g(l)

By subtracting II g II times the first row from the last and expanding by the
last row, we have

[n/2]

(g(l) - II g II) V(t2 , ... , t*, s) ? 211 g II L V(t2 , ••• , tn- 2; , tn- 2H2 , ... , s, 1),
;~l

(1.11)

where V(·, ', ... , .) is the Vandermonde of its arguments. Inequality (1.11)
can hold only if g(l) = II g" and

V(t1 , ... , tn - 2; , tn - 2H2 , ... , s, 1) = 0 for allj.

Since the arguments are distinct, this is clearly impossible. Q.E.D.

Theorem 6 is not valid for general T-systems, as evidenced by the following
example:

Consider the interval [-1/5, 1], and let uo(t) = 2 - t2 > 0, /(t) = 3t3•

Since (dldt)[f(t)/uo(t)] = 3[(6t2 - t4)/(2 - t2)2] > 0 on [-1/5, 1], f E C(uo)'
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It is easy to see that To(f) = !Jo(t). Indeed, f(t) - uo(t) = 3t3 + t2 - 2
decreases on [-1/5,0] from -1.936 to -2, and increases on [0, 1] from
-2 to +2.

Hence, °and 1 are the points of alternance, Eo(f) = 2, and the left end
point is not an extremal point.

II. NONEXISTENCE OF A DIRECT CONVERSE

We analyze in this section the question of finding a converse to the
theorems of the previous section. We would like to know, for example,
whether, for Ui = t i , i = 0, 1,..., the inequalities

n = 1,2,... (2.1)

imply that all derivatives offhave constant signs (not necessarily the same)
on (0, 1). The answer turns out to be negative; a simple counterexample:
take f(x) = ell) - e6x (8) 0). The following observation shows that (2.1)
tells us very little about j:

THEOREM 7. Let A be the set of functions for which En-I([O, 1];1) >
En([O, I];/) for all n. Then Ac, the complement of A, is a set of the first
category in qo, 1].

Proof Note that

00

Ac = U(f; En_I([O, 1];f) = En([O, 1]; f).
n=l

Let

fJ1Jn = (f; En-I([O, I];/) = En([O, 1];/).

We shall prove that fJ1Jn has an empty interior.
Let 10 belong to fJ1Jn , and let Q E A n- l be such that

There exist then n + 2-a1ternance points Xl < X2 < ... < X n +2 , and with
no loss of generality we may assume that Xl is a (+) point.

Construct a function Pnet) E An which has the same sign as fo - Q at
Xl'"'' Xn+l [this can be accomplished by prescribing the zeros of Pit) at
intermediate points].

Given any 1] > 0, the function jet) = /o(t) + (17/11 Pn [0 Pnet) satisfies
Ilf - /0 II < 'YJ. We now claim that En- l (/) > En(f).
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since the difference Tn(f) - f has n + 2 alternance points.
Thus,

En(f) = lifo - Q II·

On the other hand, f - Q = fo - Q + ('7/11 Pn II) Pn takes on at
Xl' X 2 , ... , X n+1 values which are greater in absolute value than En(f) (and
are of alternating sign). Let the minimal of these absolute values be
K, K> En(f). Then de la Vallee Poussin's theorem [3] implies En-1(f) ): K.

Q.E.D.

On the other hand, a well-known result (see [4, p. 260]) implies that
D = {f;f E qo, 1], the right-hand derivative offexists and is finite at some
X E [0, I]}, is of the first category in qo, IJ.

Since if f E C(I, X, ..., xn - 1), n ): 2, the right-hand derivative of f exists
everywhere, it follows that the class C(I,... , xn- 1), n ): 2, is of the first
category, and hence much smaller than A. Furthermore, there is a simple
example of a nonmonotone function for which En-lf) > En(f), for all n.
Thus, we have proved that (2.1) does not imply even that f (or -f) belongs
to one generalized convexity cone, let alone to an infinite intersection of
such cones.

Remark. Suppose

for all n and all rationals ex, fJ. The same arguments show that even this does
not imply that f is absolutely monotone. For the converse to be true we
need more inequalities.

III. CONVERSE THEOREMS

We shall prove in this section that properties of the type considered in
Theorems 1-3 can be used to provide a characterization of generalized
convexity cones.

The converse theorems of this section are easy to establish if f has n
continuous derivatives. The standard limit processes do not work, however,
and this is the reason for necessity of the following elaborate argumentation.

We start by proving two lemmas.
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LEMMA 3.1. If fi quo , .•• , Un-I) on [a, b], then there exist an interval
[a,,8] C [a, b] and n + 1 points in [a, ,8], Yo, YI ,... , Yn, such that

i = 0, 1'00" n.
(3.1)

Proof Assume that fi quo ,... , Un-I)' Then there exist n + 1 points,
a ~ Zo < ZI < ... < Zn ~ b, for which

uo(Zo) uo(zn)
u1(zo) u1(zn)

(1) <0.
Un-l(ZO) Un-l(Zn)

f(zo) f(zn)

Let P(x) be the best approximant from An- 1 to f on the set (zo , ZI , , zn).
It is well known [3] that such a P(x) exists, is unique, and that Zo , , Zn
satisfy

where So > 0, and a is 1 or -1.
Note next that since P EJ1n_1 , we also have

i = 0, 1,... , n, (3.2)

Un -l(ZO)
(f - P)(zo)

un_1(Zn)
(I - P)(zn)

< 0.

Substituting from (3.2) and expanding by the last row, we conclude that
a=1.

Define now

C = set of all positive constants S such that there exist a function
PaEJ1n _ 1 and an (n + I)-tuple Z08, ZI8, ... , zn8 satisfying

i = 0,1'00" n. (3.3)

Observe that C is a bounded set. In fact, C C (0, 11/11], since for S > Ilfll,
(3.3) implies that Pa has to change sign n times and therefore to have at
least n zeros. Since PaEAn_1 , this is impossible.

Let now C1 = C n [So, 11/11]. Then C1 is a bounded nonempty set, since
So E C1 • We next show that it is closed.

Let {Sk}%'=1 be a convergent sequence in C1 , and let S be its limit. We
know that SE [So, Ilfll].
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Let ~k = {ZkO , Zkl ,... , Zkn}, k = 1,2,... , be the corresponding (n + 1)
tuples whose existence is assured by (3.3). Considering these as points in
En+l-the (n + I)-dimensional Euclidean space-and noting that a <; Zij <; b
for all i andj, we conclude that {~k}%'=l has a convergent subsequence.

Note next that, for all k, i,

[(Pit - f)(Zk.i) - (Pk - !)(Zk,i+1)/ = 20k ;? 200 , (3.4)

where Pk is the function of An-1 corresponding to {ZkO ,..., Zkn}. Hence the
limit of the convergent subsequence is an (n + I)-tuple (ZO, 21 , ... , Zn) with
distinct 2;'S. Observe finally that considering

n-l
P(Zn-i) + (-I)i+1o = I ajU;(Zn_i) + (_I)i+l 0 =f(Zn-i)' i = 0,1,... , n

j=O

as a linear system of n + I equations in the n + I unknowns al ,..., an , 0,
it follows that 0, as well as the corresponding polynomial, are continuous
functions of the Zi 'So Hence, there exists a polynomial P8 such that

(P8 - !)(Zn-i) = (-1)is.
Thus, C1 is closed.

Let
(3.5)

and let P6*, {zo*, ... , Zn *} be the corresponding polynomial of An- 1 and the
(n + I)-tuple of points, respectively.

Define now

Yo = max {y; (P6* - f)(y) = (_l)n o*},
ZO*~Y~Zl *

Yn = min {y; (P6* - f)(y) = o*}, (3.6)
z* <y<z *
n-l n

Yi = Zi*' i= 1,2,...,n- 1.

We claim now that on [ex, fJ] = [Yo, Yn],

P6* = Tn_1([ex, fJ];f). (3.7)

Noting the definition of the y;'s, we observe that (3.7) implies (3.1).
We assume that

II! - P 6*II[n,.Bl > 0*, (3.8)

and proceed to show that this violates the definition (3.5) of 8*.
With no loss of generality we may assume that there exists a point y in

[ex, fJ] such that
(3.9)
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We also assume that n is odd. A very similar proof, with only slight modi
fications, establishes the theorem for n even.

By the construction (3.6) and continuity, we find that ji < Yn-l' Hence
there exists an r, 1 ~ r ~ (n - 1)(2, such that

Yn-I-2r < ji < Yn+!-2r •

Let now Xi, i = 1,... , n - 1, be the y/s with Yn-2r , Yn+I-2r excluded, and
choose Wi' i = 1,... , n - 1, satisfying

i = 2,... , n - 1.

Define the function Q E An- l by

UO(WI)

Un- 2(Wn-l) Un-2(t) .

Un-I(Wn-l) Un-let)

i = 0, 1,... , (n - 1)(2; i =1= r,

i = 0, 1,... , (n - 1)(2.

Clearly Q(t) changes sign at the w/s and only there. Furthermore, at the
right end point Q(t) > 0. Hence, for a sufficiently small positive 11, and for
all j, on (x; - 11, X; + 11) the signs of Q(t) and (Pa• - I)(t) are identical.
Note also that Q(ji) > 0. Hence, there exists a {} > °such that

(Pa- - (}Q)(Y) - l(ji) = (Pa- - f)(ji) - {}Q(ji) > 8*,

(Pa• - (}Q)(yo) - I(yo) = -8*,

(Pa• - {}Q)(Yn-2i) - I(Yn-2i) > 8*

(Pa• - (}Q)(Yn-2i-l) - I(Yn-2H) ~ -8*

Choosing 8** = mini ((Pa• - (}Q)(ji - f(Y); (Pa• - (}Q)(Yn-2i) - f(Yn-2i),
i = 0, 1,... , (n - 1)(2), and making use of the continuity of all the functions
involved, we conclude that there exists a g, 8* < g< 8**, such that
SE CI , contradicting (3.5). Q.E.D.

LEMMA 3.2. If f ¢ quo ,... , Un-I) on [a, b], then there exists an interval
[a, 13] C [a, b] such that an = an([a, f3];f) < 0, where Tn([a, f3];f) = L:~o aiUi .

Proof Consider the interval [Yo, Yn] secured in the proof of Lemma 3.1.
Starting from Yn = Yn which is a (+) point for Tn-l([yo, Yn]; f) - f, we
take the largest (-) point smaller than Yn, and call it Yn-l' We next let
Yn-2 be the largest (+) point preceding Yn-l , etc.

In this manner we obtain an n + 1 "alternance" (Yo ,... , Yn) such that,
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on [Yo, Yn], the maximal length of an "alternance" of Tn-l([yo , Yn]; f) - f
is n + 1. Therefore, the function

Tn- l([ Yo ,Yn]; I) == Tn-l([yo, Yn]; 1)1 [Yo,Yn ]

is not equal to Tn([yo , Yn]; f).
Let [ex,,8] = [Yo, Yn], and denote t k = Tk([ex, ,8]; f), k = n - 1, n. We

have

i = 0, 1,... , n,

since t n is the best approximant from the wider class An . The construction
of the points implies that

i = 0, 1,... , n,

or
i = 0, 1, ... , n. (3.10)

Strict inequality must prevail for at least one i, since, otherwise, the functions
1'n and 1'n-l would agree on n + 1 points and would therefore be identical,
contrary to the definition of the interval.

Expanding the determinant

un-l(Yo)
(Tn - Tn- l)( Yo)

Un-l(Yn)
(Tn - Tn- l)( Yn)

by the last row, we conclude that it is negative, Since its sign is clearly equal
to that of an , the lemma is proved.

We come now to the first "converse" theorem.

THEOREM 8. Let f be a continuous function on [a, b]. Assume that, for all
[ex, ,8], a ~ ex < ,8 ~ b,

deg Tn([ex, (3]; f) = n. (3.11)

Then either f or -fbelongs to quo, Ul , ... , Un-I)" A n- l (for all [ex, ,8]).

Proof Note first thatf¢:An_l for all [ex, ,8]; this is a direct consequence
of (3.11).

Assume f l' C(uo ,... , Un-I)' By Lemma 3.2, there exists an interval [exl , ,81]
such that
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If, further, -frt= quo ,..., Un-I), then there exists another interval [a2' ,82]
such that

Since Tn is a continuous function of the interval, continuity arguments
show the existence of an interval [a3' ,83] such that

contradicting (3.11). Hence, either for -f must belong to quo ,..., Un-t>o

Similarly, Lemma 3.2 implies the following:

THEOREM 9. Let f be a continuous function on [a, b]. Assume that for all
[a, ,8], a ~ a < ,8 ~ b, we have

(3.12)

then f E quo ,... , Un-I)~A n- I (for all [a, ,8] C [a, b]).
If a weak inequality holds in (3.12) for all [a,,8] C [a, b], then

f E quo ,..., Un-I)'

THEOREM 10. Let f be a continuous function on [a, b]. Assume that, for
all [a, ,8], a ~ a < ,8 ~ b, the maximal length of an "alternance" of
f - Tn_I([a, ,8); f) is n + I; then f E quo ,..., Un-I)~An- I (for all such [a, ,8]).

Conclusion

Let f belong to qa, b]. Then the following statements are equivalent:

(a) En_I([a, ,8];/) > En(a, ,8];/), for all [a, ,8], a ~ a <,8 ~ b.

(b) fE quo ,... , Un-I)~ An- I for all such [a, ,8].
(c) an([a, ,8];/) > 0, for all such [a, ,8], where an is the "leading

coefficient" of the best approximant from An to f
(d) For each such [a, ,8], the maximal length of an "alternance" of

f - Tn_I([a, ,8];/) is n + 1.
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